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Abstract

It is unclear whether reduced plasma pyridoxal 59-phosphate (PLP) during inflammation reflects an altered distribution or

increased requirement of vitamin B-6 that may impair overall vitamin B-6 status in tissues. In plasma from 3035 patients

undergoing coronary angiography for suspected coronary heart disease, we investigated if plasma concentrations of any

metabolites in the kynurenine pathway, which depend on PLP as cofactor, may serve as metabolic marker(s) of vitamin B-6

status. We also examined the association of vitamin B-6 status with serum or plasma concentrations of several inflammatory

markers. Among the kynurenines, only 3-hydroxykynurenine (HK) was inversely related to PLP and showed a positive relation

to 4 investigated inflammatory markers. A segmented relationship was observed between PLP and HK, with a steep slope at

PLP concentrations, 18.4 nmol/L, corresponding to the 5th percentile, and an almost zero slope at higher PLP concentrations.

Low PLP and the steep PLP-HK slope were essentially confined to participants with 1 or more inflammatory markers in the

upper tertile. Oral supplementation with pyridoxine hydrochloride (40mg/d) for 1mo increased plasma PLP 8-fold, reduced the

geometric mean (95% CI) of HK from 29.5 to 20.2 nmol/L (P, 0.001), and abolished the steep segment of the PLP-HK curve.

The steep inverse relationship of plasma PLPwith HK at low plasma PLP and the lowering of HK by pyridoxine suggest plasma

HK as ametabolicmarker of vitamin B-6 status. Thus, low plasma PLP during inflammationmay reflect impaired cellular vitamin

B-6 status, as indicated by the concurrent increase in plasma HK. J. Nutr. 141: 611–617, 2011.

Introduction

Low plasma concentrations of the vitamin B-6 form pyridoxal
59-phosphate (PLP)10 have been reported in patients with high

levels of inflammatory markers (1–7) and with conditions
associated with inflammation, including rheumatoid arthritis
(2,8), cardiovascular disease (7), and diabetes (9). It has not been
settled whether this merely reflects altered distribution of PLP
(8,10) or increased PLP requirements leading to low PLP and
impaired vitamin B-6 status in tissues (5).

Plasma PLP is the most commonly used vitamin B-6 marker
(11–13) and is suggested to reflect stores of vitamin B-6 in liver
and other tissues (14). Erythrocyte PLP is strongly related to
plasma PLP and has been considered as an indicator of long-
term vitamin B-6 status (12), at least in healthy individuals (15).
However, in patients with an inflammatory condition like
rheumatoid arthritis, erythrocyte PLP seems to be a measure of
vitamin stores restricted to the erythrocyte compartment, and
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plasma PLP may be a better indicator of overall vitamin B-6
status (16).

PLP is the active form of vitamin B-6 and functions as
cofactor in .100 metabolic reactions (17), including several
steps of the kynurenine pathway of tryptophan metabolism (18).
The first step in the oxidation of tryptophan to kynurenine is
catalyzed by the hepatic enzyme tryptophan dioxygenase or the
ubiquitous and inducible indoleamine (2,3)-dioxygenase (IDO)
(19). Kynurenine is further metabolized to kynurenic acid (KA)
by kynurenine transaminase, or to anthranilic acid (AA) by
kynureninase. Both of these enzymes require PLP as coenzyme.
Alternatively, kynurenine may be converted to 3-hydroxykynu-
renine (HK) by the FAD-dependent enzyme kynurenine 3-
hydroxylase (20). HK may be further converted to xanthurenic
acid (XA) by kynurenine transaminase, or to 3-hydroxyanthra-
nilic acid (HAA) by kynureninase (20).

Because of the involvement of PLP in the kynurenine
pathway, circulating kynurenines are candidate metabolic bio-
markers of impaired vitamin B-6 status in tissues. This possi-
bility has not yet been explored despite the observations that
urinary HK and XA drastically increased after tryptophan load
during vitamin B-6 depletion and were normalized following
pyridoxine supplementation (21–23).

Metabolic markers of vitamin status have several advantages
compared with circulating vitamin concentrations, as documented
for methylmalonic acid (vitamin B-12) (24) and homocysteine
(folate and vitamin B-12) (25). Metabolic markers reflect vitamin
function in tissues, are less affected by short-term vitamin intake
and vitamin redistribution, and allow assessment of vitamin status
during supplementation. Ametabolic marker of vitamin B-6 status,
particularly in inflammation, has not been established.

C-reactive protein (CRP) is the most commonly measured
inflammatory marker. Its synthesis in the liver is induced by
cytokines like IL-1, IL-6 ,and TNFa (26). These cytokines also
have effects on the hematopoietic system and mediate leukocy-
tosis. The proinflammatory cytokine IFNg activates IDO (19),
thereby increasing the conversion of tryptophan to kynurenine
and thus the plasma kynurenine:tryptophan ratio (KTR) (19,27),
and also induces the formation of neopterin in macrophages.
Thus, KTR and neopterin are both markers of immune activation
mediated by IFNg (19). Notably, kynurenine, HK, and HAAmay
modulate T-cell functions (28).

The primary objective of the present study was to investigate if
low plasma PLP was associated with impaired cellular function of
vitamin B-6. We first explored plasma concentrations of several
kynurenines as potential metabolic markers of vitamin B-6 status
and then investigated the association between vitamin B-6 indices
and inflammatory status. Finally, the effect of vitamin B-6 sup-
plementation for 1 mo was studied. The investigation was a
substudy of the Western Norway B-Vitamin Intervention Trial
(WENBIT) and involved 3035 patients undergoing coronary
angiography for suspected coronary artery disease.

Materials and Methods

Participants. The study included 3035 adults (.98% Caucasians),
which constitutes a subset of the WENBIT who were undergoing

coronary angiography for suspected coronary artery disease between

1999 and 2004 at the Haukeland University Hospitals in Bergen and

Stavanger University Hospital in Stavanger, Norway (29). Details of the
WENBIT study have been published elsewhere (29). In the current study,

we used data at baseline for all participants and after 1 mo of follow-up

for participants randomly allocated to receiving placebo (n = 763) or 40

mg/d pyridoxine (pyridoxine hydrochloride) (n = 759).

Written informed consent was obtained from all participants. The

study protocol was in accordance with the principles of the Declaration

of Helsinki and the trial was approved by the Regional Committee for
Medical and Health Research Ethics, the Norwegian Medicines Agency,

and the Data Inspectorate.

Biochemical analyses. Plasma samples for measurements of bio-
markers were stored at 2808C until analyzed. Plasma concentrations of

PLP, tryptophan, kynurenine, KA, AA, HK, XA, HAA, neopterin, and

cotinine were measured by HPLC-MS/MS (30) and creatinine by

including it and its deuterated internal standard (d3-creatinine) in an
established HPLC-MS/MS assay (31), using the ion pairs 114/44.2 and

117/47.2, respectively. KTR was calculated by dividing the plasma

concentration of kynurenine (in nmol/L) by the concentration of
tryptophan (in mmol/L). CRP was determined in serum by an ultrasen-

sitive immunoassay applying the Behring nephelometer II system (Latex

CRP mono, Behring Diagnostics). White blood cell count (WBC) was

determined in EDTA-blood by Abbott Cell Dyn 4000 (Abbott Diagnos-
tics) or by ADVIA 120 (Bayer Diagnostics). Serum total cholesterol was

measured at the central laboratory of the Haukeland University Hospital

with the use of Technicon Chem 1 (Bayer).

Statistical analyses. Data were given as means or medians (5th, 95th

percentiles) or geometric means (95% CI). Correlations among age, sex,

and plasma indices were assessed by partial Spearman correlation after
adjustment (where appropriate) for age, sex, study center, and creatinine.

The effect of pyridoxine supplementation on plasma indices was

tested by using mixed linear models with a random effect for volunteer

and fixed effects for time point (d 0 or 28), supplement (placebo or
pyridoxine), and the time point-supplement interaction. Post hoc

analyses with Bonferroni correction for multiple comparisons were

then performed to test whether the supplementation and placebo group

differed at d 0 (baseline) and whether the placebo group changed from
baseline to d 28. Plasma indices were log-transformed before analysis to

obtain normal-like data. As such, the P-values obtained refer to the

differences in log-transformed values or, accordingly, to relative differ-

ences in geometric means.
Graphical representations of dose-response relationships between

PLP and HK were obtained by generalized additive models (GAM)

adjusted for age, sex, study center, smoking (cotinine), creatinine,
tryptophan, and BMI. We tested for a non-zero difference in slope of a

segmented linear relationship by regressing HK on PLP at baseline, using

Davies’ test. The PLP-HK relationship at baseline was also fitted by

segmented regression using the breakpoint value from Davies’ test as the
starting estimate for the breakpoint between regression segments.

Segmented regression was also performed on subgroups defined by

individuals having each inflammatory marker in the lower, middle, or

upper tertile. The regression models were adjusted for age, sex, study
center, smoking (cotinine), creatinine, and BMI and returned slopes of

both segments and the breakpoint with 95% CI. A binomial test was

used to investigate if the number of participants with each inflammatory
marker in the upper tertile and PLP , 18.4 nmol/L was different from

the expected one-third.

Statistical analyses were performed by using SAS version 9.2 (SAS

Institute), R version 2.8.1 (The R Foundation for Statistical Computing),
and SPSS (version 15) software forWindows. GAMmodels were computed

using the mgcv-package (version 1.4–0) and segmented regression by

the segmented-package (version 0.2–6), both in R (version 2.8.1) (32).

All P-values were 2 sided, and values , 0.05 were considered significant.

Results

Participant characteristics. A total of 79.6%of the participants
were male and the mean age was 61.6 y (Table 1). At baseline,
83.7% had stable angina pectoris, 14.9% had acute coronary
syndrome, and 59.3% had double- or triple-vessel disease.

Plasma indices and correlations at baseline. The median
plasma concentrations were 38.7 nmol/L for PLP and 28.9
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nmol/L for HK. The median concentrations of other kynuren-
ines (KA, AA, XA, and HAA) were also in the nanomolar range
(13.6–47.3 nmol/L), whereas micromolar concentrations were
found for median kynurenine (1.63) and tryptophan (68.0)
(Table 1).

Median plasma concentrations of the inflammatory markers
were 2.0 mg/L for CRP, 7.0 3 109/L for WBC, 23.6 nmol/mmol
for KTR, and 8.0 nmol/L for neopterin. CRP was.10.0 mg/L in
10.7% of the participants and showed a moderate correlation
with WBC (r = 0.36; P , 0.001) and weak correlations with
KTR (r = 0.15; P , 0.001) and neopterin (r = 0.23;P , 0.001).
KTR and neopterin were strongly correlated (r = 0.46; P ,
0.001) (Supplemental Table 1).

Among the kynurenines, only HK was inversely correlated
with PLP (r = 20.20; P , 0.001) and showed a positive
correlation to all inflammatory markers (r = 0.11–0.43; P ,
0.001); the strength of the associations decreased in the order
KTR, neopterin, CRP, and WBC (Supplemental Table 1).

Plasma PLP was inversely correlated with all inflammatory
markers (20.15, r,20.28; P, 0.001) and the strength of the
correlations decreased in the order CRP, WBC, KTR, and
neopterin (Supplemental Table 1).

The PLP–HK relation. We used GAM to obtain dose-response
curves between PLP and the kynurenines. A distinctly nonlinear
PLP-HK relation was found with an abrupt change in slope at a

PLP concentration of ;20 nmol/L. By applying segmented
regression for the biphasic relationship using data from all
patients, we obtained a breakpoint of 18.4 nmol/L, below which
the inverse relationship between PLP and HK showed the
steepest slope (Fig. 1; Table 2). The relation of PLP with other
kynurenines were essentially linear.

PLP and HK according to levels of inflammatory markers.

Among a total of 153 (5.0%) participants with PLP , 18.4
nmol/L, 143 (93.5%) had baseline serum or plasma concentra-
tions of 1 or more inflammatory markers in the upper tertile
(Fig. 2). For isolated high CRP, KTR, neopterin, or WBC, the
numbers of affected participants were 93, 92, 82, and 75,
respectively, all higher than the expected number of 51 (one-
third of 153) (P , 0.001).

We investigated the dose-response relationship between PLP
and HK at baseline according to tertile strata of inflammatory
markers CRP, WBC, KTR, and neopterin. Segmented regression
analyzes and Davies’ test demonstrated a biphasic (2 segments)
relationship characterized by a highly significant breakpoint in
the plasma PLP concentration range of 16–19 nmol/L and a

TABLE 1 Baseline characteristics of the cardiovascular
patients studied1

Characteristics

Age, y 61.8 (44.7–77.3)

Male sex, n (%) 2414 (79.6)

BMI, kg/m2 26.9 (21.5–33.5)

Current smoking, n (%) 875 (28.8)

Cotinine, nmol/L 1.7 (0.0–1693)

Vitamin supplement use, n (%) 1117 (36.8)

Disease history, n (%)

Myocardial infarction 1259 (41.5)

Percutaneous coronary intervention 623 (20.5)

Coronary artery by-pass grafting 408 (13.4)

Stroke, TIA, or carotid artery stenosis2 188 (6.2)

Treatment for hypertension 1396 (46.0)

Lipid lowering statin treatment 2173 (71.6)

Diabetes mellitus 348 (11.5)

Blood indices and inflammatory markers

Total cholesterol, mmol/L 4.9 (3.5–7.1)

Creatinine, mmol/L 73.0 (52.8–102.0)

PLP, nmol/L 38.7 (18.4–96.4)

CRP, mg/L 2.0 (0.4–19.3)

WBC, x109/L 7.0 (4.5–11.2)

KTR, nmol/mmol 23.6 (15.7–39.4)

Neopterin, nmol/L 8.0 (5.2–14.8)

Tryptophan and kynurenines

Tryptophan, mmol/L 68.0 (47.3–92.5)

Kynurenine, mmol/L 1.63 (1.1–2.6)

KA, nmol/L 47.3 (25.1–91.5)

AA, nmol/L 13.6 (7.7–26.3)

HK, nmol/L 28.9 (15.1–59.0)

XA, nmol/L 13.8 (5.9–29.5)

HAA, nmol/L 33.8 (15.8–65.7)

1 Values are medians (5th–95th percentile), n = 3035, or n (%).
2 TIA, transient ischemic attack.

FIGURE 1 GAM (A) and segmented regression model (B) relating

plasma concentrations of PLP and 3-HK in 3035 cardiovascular patients

at baseline. The distribution of plasma PLP is shown at the bottom of

each panel. The shaded area around the GAM curve shows the 95%

CI around the central estimate.
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steep slope with a narrow CI at low PLP concentrations in the
upper tertile of each inflammatory marker (Table 2). In the
middle and lower tertiles, the CI for the lower segments
generally were wide and/or Davies’ test detected no difference
in slope parameters (not shown).

Effect of pyridoxine supplementation. Supplementation with
pyridoxine (40 mg/d) for 1 mo increased geometric mean plasma
PLP 8-fold and reduced geometric mean HK from 29.5 to 20.2
nmol/L (P , 0.001) but did not affect the concentrations of
inflammatory markers. The concentrations of KA, AA, and
HAA were slightly increased, whereas XA was not affected by
pyridoxine supplementation (Table 3).

The dose-response curve for PLP compared with HK after
pyridoxine supplementation was similar to and essentially a
continuation of the upper segment found at baseline, showing a
modest decrease in HK by increasing PLP (Fig. 3).

Discussion

Principal findings. The primary objective of the present study
was to investigate if low plasma PLP in patients with inflam-
mation is associated with impaired cellular function of vitamin
B-6. We demonstrated that plasma HK meets some fundamental
criteria of a candidate metabolic marker of vitamin B-6 status,
i.e. an inverse association with plasma PLP and a marked
reduction following supplementation with pyridoxine. Further,
inflammation was inversely related to PLP and positively related
to HK, but pyridoxine supplementation did not affect the
plasma concentration of any of the inflammatory markers. The
combination of low plasma PLP and a steep inverse relationship
between PLP and HK was essentially confined to participants
with inflammatory markers in the upper tertiles. Taken together,
these results suggest that low plasma PLP during inflammation
reflects tissue PLP depletion to an extent that affects its function
as cofactor of (some) cellular enzyme reactions.

Markers of inflammation. The strong correlation between
KTR and neopterin is in agreement with published results
(19,27) and is explained by IFNg being the main inducer of both
neopterin and kynurenine formation during activation of the
cellular immune system (19). KTR and neopterin showed
weaker correlations with CRP and WBC, which are both part
of the acute response of the innate immune system induced
primarily by the cytokine IL-6 (33,34). Thus, correlations
between inflammatory markers included in this study may reflect
the pluridimensional aspects of the inflammatory response.

Plasma HK as a systemic vitamin B-6 marker. Among the
kynurenines, only HK was inversely related to plasma PLP, with
the steepest part of the PLP-HK curve at low PLP. This may
reflect that HK is the only kynurenine where further metabolism,
but not formation, requires PLP (18). HK is metabolized by 2
PLP-dependent enzymes, kynurenine transaminase and kynu-
reninase, and the activity of the latter enzyme has been shown to
be particularly responsive to dietary vitamin B-6 restriction
(35,36).

There are 3 lines of evidence in favor of plasma HK as a
metabolic marker of vitamin B-6 status. First, the PLP-dependent
pathways of HK metabolism provide a biochemical mechanism.
Second, we observed an inverse relationship between PLP andHK.
Segmented regression and GAM demonstrated that the PLP-HK
curve was steep at plasma PLP concentrations , 16–19 nmol/L
when including participants with each inflammatory marker in the
upper tertile. Finally, our longitudinal data showed a marked
reduction in plasma HK following pyridoxine supplementation,
demonstrating that plasma HK responds to improved vitamin B-6
status.

TABLE 2 Plasma HK vs. PLP at baseline according to inflammatory status in cardiovascular patients by
segmented regression and Davies’ test

Plasma/serum
inflammation marker Tertile n

Segmented regression Davies' test2

Slope 1 (95% CI)1 Breakpoint1 Slope 2 (95% CI)1 Breakpoint1 P

nmol 3-HK/nmol PLP nmol PLP/L nmol 3-HK/nmol PLP

All 3035 24.5 (25.4, 23.6) 18.4 (17.6, 19.3) 20.06 (20.07, 20.05) 18.4 ,0.001

CRP 33 1011 24.2 (25.4, 23.0) 18.9 (17.4, 20.5) 20.11 (20.17, 20.06) 22.5 ,0.001

WBC 33 975 28.7 (210.7, 26.8) 16.4 (15.6, 17.3) 20.11 (20.16, 20.06) 16.3 ,0.001

KTR 33 1005 24.8 (26.2, 23.4) 18.6 (17.2, 20.0) 20.16 (20.21, 20.11) 23.3 ,0.001

Neopterin 33 1006 25.0 (26.4, 23.7) 18.8 (17.4, 20.3) 20.14 (20.19, 20.09) 23.7 ,0.001

1 Adjusted for age, sex, study center, smoking (cotinine), creatinine, and BMI.
2 Tests for a nonzero difference in slope parameter of a segmented relationship.
3 Lower limit of each tertile was CRP, 3.1 mg/L; WBC, 7.9 3 109; KTR, 26.6; neopterin, 9.2 nmol/L.

FIGURE 2 Venn diagram showing the distribution of cardiovascular

patients with low plasma PLP (,18.4 nmol/L) according to inflamma-

tory status given as any combination of inflammatory markers in the

respective upper tertile. The number of individuals in the upper tertile

of each inflammatory marker is indicated inside each ellipse. The total

number of individuals with low PLP was 153 and among these 143

had 1 or more inflammation marker in the upper tertile. For isolated

high CRP, KTR, neopterin, or WBC, the numbers were 93, 92, 82, and

75, respectively.
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The steep slope of the PLP-HK curve at low PLP demon-
strates that HK is a responsive measure of impaired vitamin B-6
status. Method accuracy and precision of PLP measurement at
low PLPmay be insufficient to capture differences in vitamin B-6
status in deficient individuals. Measurement of the HK response
may therefore improve the assessment of vitamin B-6 status and
thereby lead to classification improvement in epidemiological
studies, where the tryptophan load test is not feasible.

HK was positively correlated with all the inflammatory
markers but most strongly to KTR. Therefore, our data do not
exclude the possibility that increased HK is restricted to patients
with the combination of impaired vitamin B-6 status and
immune response linked to IDO activation. However, the
observations of reduced urine (21–23) and plasma HK concen-
trations due to pyridoxine supplementation, and low kynuren-
inase and transaminase activity during dietary vitamin B-6
restriction (35) point to HK as a candidate systemic marker of
vitamin B-6 status. Thus, the combination of elevated HK and
low PLP suggests that inflammation leads to impaired vitamin
B-6 status.

Plasma PLP. The observed median concentration of PLP (38.7
nmol/L) was in the range previously reported for healthy
individuals (37–39). Notably, the breakpoint of the PLP-HK
curves occurred at PLP slightly,20 nmol/L, which is close to the
lower 5th percentile of our study population and also close to the
lower bound of PLP concentrations previously suggested by
others to define vitamin B-6 deficiency (12,14,40,41). In our
study population, the PLP concentration breakpoint was stable
only for the participant groups with an inflammation marker in
the upper tertile.

Vitamin B-6 status during inflammation. Our data confirm
published reports on an association between elevated CRP and
low PLP in healthy individuals (5,42) and patients with
inflammatory conditions (2,6,9), including CVD (43,44). We
also observed inverse associations between PLP and 2markers of
Th1-mediated immune activation, KTR and neopterin. Notably,

143 of 153 individuals with baseline plasma PLP, 18.4 nmol/L
had at least 1 inflammatory marker in the upper tertile.

Vitamin B-6 depletion during inflammation and immune
activation may be related to the involvement of PLP in cytokine
production (45) and lymphocyte proliferation (45,46). Further-
more, the PLP-dependent steps of downstream kynurenine
metabolism may also increase vitamin B-6 consumption during
inflammation, but additional mechanistic studies are required to
test this hypothesis. Uptake of vitamin B-6 into cells is facilitated
by hydrolysis of PLP to PL by alkaline phosphatase (ALP). The
reported positive correlation of ALP with CRP and WBC (47)
may thus suggest that low plasma PLP concentrations in
inflammation are mediated in part by elevated ALP. Unfortu-
nately, ALP was not measured in the present study.

TABLE 3 Circulating concentrations of PLP, inflammatory markers, and tryptophan metabolites in
cardiovascular patients who received placebo or pyridoxine (40 mg/d) for 1 mo1

Variable

Baseline After 28 d

P 2 P 3 P 4Placebo Vitamin B-6 Placebo Vitamin B-6

n 763 759 633 639

PLP, nmol/L 39.7 (38.3, 41.1) 41.5 (39.9, 43.2) 40.3 (38.8, 41.8) 333.9 (321.3, 347.0) ,0.001 0.56 1.00

CRP, mg/L 2.2 (2.0, 2.3) 2.1 (1.9, 2.3) 2.1 (1.9, 2.3) 2.0 (1.8, 2.2) 0.69 1.00 1.00

WBC, x109/L 7.1 (6.9, 7.2) 6.9 (6.8, 7.0) 6.7 (6.6, 6.9) 6.6 (6.5, 6.8) 0.99 0.64 0.001

KTR, nmol/mmol 23.9 (23.4, 24.4) 24.1 (23.6, 24.6) 25.8 (25.2, 26.4) 26.0 (25.4, 26.5) 0.63 1.00 ,0.001

Neopterin, nmol/L 8.3 (8.1, 8.5) 8.1 (8.0, 8.3) 8.7 (8.4, 8.9) 8.6 (8.4, 8.8) 0.10 0.80 0.002

Trp, mmol/L 67.0 (66.0, 68.0) 67.7 (66.7, 68.7) 67.8 (66.8, 68.8) 67.4 (66.5, 68.3) 0.15 1.00 1.00

Kyn, mmol/L 1.60 (1.57, 1.63) 1.63 (1.60, 1.66) 1.75 (1.72, 1.78) 1.75 (1.72, 1.78) 0.32 1.00 ,0.001

KA, nmol/L 47.2 (45.9, 48.5) 48.0 (46.6, 49.3) 50.0 (48.6, 51.5) 56.0 (54.4, 57.6) ,0.001 1.00 ,0.001

AA, nmol/L 13.9 (13.5, 14.3) 13.9 (13.5, 14.3) 13.5 (13.2, 13.9) 14.4 (14.1, 14.8) ,0.001 1.00 0.18

HK, nmol/L 29.0 (28.2, 29.9) 29.5 (28.7, 30.3) 29.9 (28.8, 31) 20.2 (19.5, 20.9) ,0.001 1.00 0.23

XA, nmol/L 13.5 (13.0, 13.9) 14.0 (13.5, 14.5) 14.5 (13.9, 15) 14.3 (13.8, 14.8) 0.06 0.81 0.001

HAA, nmol/L 33.1 (32.1, 34.2) 33.7 (32.7, 34.8) 36.3 (35.2, 37.5) 42.7 (41.5, 43.9) ,0.001 1.00 ,0.001

1 Data are geometric means (95% CI).
2 Test for group (placebo vs. vitamin B-6) by time (d 0 vs. d 28) effect on plasma concentrations by using mixed models.
3 Difference in concentration ratios in the placebo group vs. the vitamin B-6 group at baseline, by linear mixed models and post hoc tests

(Bonferroni corrected).
4 Difference in concentration ratios in the placebo group at baseline vs. day 28, by linear mixed models and post hoc tests (Bonferroni

corrected).

FIGURE 3 The association of plasma PLP and 3-HK in 759

cardiovascular patients before (baseline) and after pyridoxine supple-

mentation for 1 mo. The shaded area around each GAM curve shows

the 95% CI of the model fitted. The distribution of plasma PLP is

shown at the bottom of the panel.
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We observed reduced plasma HK and no change in the
concentration of any inflammatory marker following pyridoxine
supplementation for 1 mo. This is in line with previous findings
that pyridoxine supplementation does not affect proinflamma-
tory cytokine production in healthy individuals (48) and patients
with rheumatoid arthritis (49) or inflammatory markers of
atherosclerosis in patients with stable coronary artery disease
(50). Notably, pyridoxine supplementation gave null results on
clinical outcomes in patients with coronary artery disease in
large randomized controlled trials (29,51–53).

Strength and limitations. The main strengths of the current
study are the large sample size and a well-characterized study
population with variable inflammatory status as assessed by 4
different markers reflecting IL-6 as well as INFg mediated
immune activation. We measured vitamin B-6 status by plasma
PLP concentration as well as a potential functional metabolic
marker, plasma HK, and obtained longitudinal data on the effect
of pyridoxine treatment on vitamin B-6 status and inflammatory
markers. One limitation was that although we had reliable data
on B vitamin supplement use, we had no data on dietary intake
of vitamin B-6 at baseline. Another limitation was that the study
population consisted of patients with coronary artery disease,
which includes conditions affecting short-term concentrations of
inflammatory markers. Some of our observations on the link
between vitamin B-6 status and inflammatory markers may
therefore not be directly applicable to healthy populations.

In conclusion, we identified plasma HK as a potential marker
of functional vitamin B-6 status by demonstrating its inverse
relationship with plasma PLP and reduction of HK following
supplementation with pyridoxine. We then demonstrated in this
study population of patients with coronary artery disease that
inflammation is the main predictor of impaired vitamin B-6
status, and 94% of participants with PLP below the 5th per-
centile had increased concentrations of 1 or several markers of
inflammation. This suggests increased metabolic consumption of
vitamin B-6 during inflammation. Additional studies are needed
to investigate if this relation is also present in other populations,
including healthy individuals. Further investigation of HK as a
marker of vitamin B-6 status should assess preanalytical vari-
ability and individuality as well as the effects of age, nutritional
status, and various diseases.
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Online Supporting Material 
 

Supplemental Table 1. Spearman correlations between age and plasma indices in cardiovascular patients at baseline1 
 Age Cot Creat PLP CRP WBC KTR Neopt Trp Kyn KA AA HK XA 
Cot -0.28* 1.00             
Creat 0.27* -0.08* 1.00            
PLP -0.08* -0.18* 0.07* 1.00           
CRP -0.03 0.14* 0.01 -0.28* 1.00          
WBC -0.17* 0.27* -0.03 -0.22* 0.36* 1.00         
KTR 0.31* -0.05* 0.38* -0.18* 0.15* 0.05* 1.00        
Neopt 0.28* -0.07* 0.36* -0.15* 0.23* 0.08* 0.46* 1.00       
Trp -0.13* -0.04* 0.02 0.26* -0.09* -0.07* -0.41* -0.21* 1.00      
Kyn 0.23* -0.09* 0.43* 0.02 0.09* 0.001 0.67* 0.31* 0.32* 1.00     
KA 0.13* -0.08* 0.42* 0.13* 0.001 0.003 0.29* 0.08* 0.20* 0.46* 1.00    
AA 0.22* -0.15* 0.28* 0.15* 0.01 -0.05* 0.25* 0.21* 0.13* 0.37* 0.32* 1.00   
HK 0.15* 0.002 0.33* -0.20* 0.20* 0.11* 0.43* 0.25* 0.11* 0.55* 0.39* 0.20* 1.00  
XA -0.09* -0.04* 0.27* 0.19* -0.06* -0.03 0.02 -0.06* 0.36* 0.29* 0.63* 0.21* 0.41* 1.00 
HAA -0.06* -0.05* 0.11* 0.10* 0.09* 0.02 0.09* -0.01 0.42* 0.42* 0.44* 0.16* 0.50* 0.56* 
1 Adjusted (where appropriate) for age, sex, study center and creatinine. All patients were included, n=2985. 
Cot, cotinine; Creat, creatinine; Neopt, neopterin; Trp, tryptophan; Kyn, kynurenine. 
An asterisk indicate significant correlations: * P< 0.05 
 

 


